Семинар 8

Триггерные системы. Конкуренция. Аналитическое исследование (определение стационарных состояний и их устойчивости) и построение фазовых и кинетических портретов.

Одна из важных особенностей биологических систем — способность к переключению из одного режима функционирования в другой. Модель (система уравнений), описывающая подобное явление, будет иметь два или более устойчивых стационарных состояния, между которыми возможен переход. Такая система называется *триггерной*.

В соответствии с гипотезой В. Вольтерра, обобщающей представления о функционировании экологических сообществ, модель конкуренции популяций двух видов имеет вид:

$$\begin{cases} \frac{dx_1}{dt} = a_1 x_1 - b_{12} x_1 x_2 - c_1 x_1^2, \\ \frac{dx_2}{dt} = a_2 x_2 - b_{21} x_2 x_1 - c_2 x_2^2. \end{cases}$$
(8.1)

Здесь переменные x_i — численности видов, параметры a_i — константы собственной скорости роста видов, c_i — константы самоограничений численности (внутривидовой конкуренции), b_{ij} — константы взаимодействия видов (i, j = 1, 2). Значения всех параметров в системе (8.1) положительны.

Главные изоклины. Уравнения изоклин горизонтальных касательных: $x_2 = 0$ и $x_2 = \frac{a_2 - b_{21} x_1}{c_2}$. Уравнения

изоклин вертикальных касательных: $x_1 = 0$ и $x_2 = \frac{a_1 - c_1 x_1}{b_{12}}$.

Каждое из уравнений задает прямую. Попарные пересечения изоклин горизонтальных и вертикальных касательных дают стационарные состояния. Возможные взаимные расположения прямых-главных изоклин приведены на рисунке 8.1. Более подробное изображение с направлением фазовых траекторий приведено в учебнике (Ризниченко, 2002, Лекция 9).

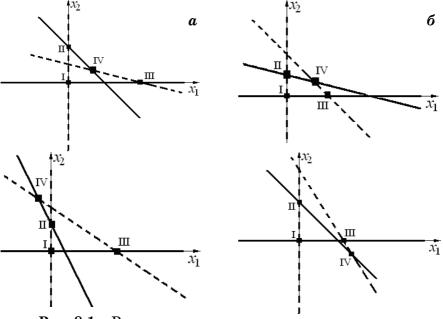


Рис. 8.1. Возможн горизонтальных (сплош ная линия) касательных.

ззаимные расположения и: 2 ін линия) и вертикальных (пу 2 р-

Поиск стационарных состояний. Решаем систему алгебраических уравнений:

$$\begin{cases} x_1(a_1 - b_{12}x_2 - c_1x_1) = 0, \\ x_2(a_2 - b_{21}x_1 - c_2x_2) = 0. \end{cases}$$

Получаем координаты четырех стационарных состояний:

- I) $\overline{x}_1^I = 0, \ \overline{x}_2^I = 0$
- II) $\overline{x}_1^{II} = 0$, $\overline{x}_2^{II} = \frac{a_2}{c_2}$ это стационарное состояние соответствует вымиранию вида x_1 и достижению видом x_2 стационарной численности $\frac{a_2}{c_2}$.
- III) $\overline{x}_1^{III} = \frac{a_1}{c_1}$, $\overline{x}_2^{III} = 0$ аналогично п. II, это стационарное состояние соответствует вымиранию вида x_2 и достижению видом x_1 стационарной численности $\frac{a_1}{c_1}$.
- IV) $\overline{x}_1^{IV} = \frac{a_1c_2 a_2b_{12}}{c_1c_2 b_{12}b_{21}}$, $\overline{x}_2^{IV} = \frac{c_1a_2 a_1b_{21}}{c_1c_2 b_{12}b_{21}}$ биологический смысл имеют лишь неотрицательные значения обеих переменных.

Линеаризация системы в окрестности стационарного состояния. Коэффициенты линеаризованной системы:

$$P'_{x_1}(\overline{x}_1, \overline{x}_2) = a_1 - b_{12}\overline{x}_2 - 2c_1\overline{x}_1$$
, $P'_{x_2}(\overline{x}_1, \overline{x}_2) = -b_{12}\overline{x}_1$
 $Q'_{x_1}(\overline{x}_1, \overline{x}_2) = -b_{21}\overline{x}_2$, $Q'_{x_2}(\overline{x}_1, \overline{x}_2) = a_2 - b_{21}\overline{x}_1 - 2c_2\overline{x}_2$

В окрестности стационарного состояния $\overline{x}_1^I=0, \overline{x}_2^I=0$ матрица коэффициентов линеаризованной системы имеет вид: $\begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}$. Корни соответствующего характеристическо-

го уравнения суть $\lambda_1^I=a_1$, $\lambda_2^I=a_2$. Корни действительные положительные. Таким образом, получаем, стационарное состояние $\overline{x}_1=0, \overline{y}_1=0$ неустойчиво и поведение фазовых траекторий в его окрестности имеет характер узла.

В окрестности стационарного состояния $\overline{x}_1^{II} = 0$, $\overline{x}_2^{II} = \frac{a_2}{c_2}$ матрица коэффициентов линеаризованной системы имеет вид: $\begin{bmatrix} a_1 - \frac{b_{12}a_2}{c_2} & 0 \\ -\frac{b_{21}a_2}{c_2} & -a_2 \end{bmatrix}$. Корни соответствующего характери-

стического уравнения: $\lambda_1^{II} = \frac{a_1c_2 - b_{12}a_2}{c_2}$, $\lambda_2^{II} = -a_2$. Оба корня действительны, корень $\lambda_2^{II} = -a_2$ всегда отрицателен. Корень $\lambda_1^{II} = \frac{a_1c_2 - b_{12}a_2}{c_2}$ отрицательный, если $a_1c_2 - b_{12}a_2 < 0$, в этом случае стационарное состояние II является устойчивым узлом. Корень $\lambda_1^{II} = \frac{a_1c_2 - b_{12}a_2}{c_2}$ положительный, если $a_1c_2 - b_{12}a_2 > 0$, тогда в стационарной точке II имеем седловую неустойчивость.

В окрестности стационарного состояния $\overline{x}_1^{III} = \frac{a_1}{c_1}$, $\overline{x}_2^{III} = 0$ матрица коэффициентов линеаризованной системы имеет вид: $\begin{pmatrix} -a_1 & -\frac{b_{12}a_1}{c_1} \\ 0 & a_2 - \frac{b_{21}a_1}{c_1} \end{pmatrix}$. Корни соответствующего характери-

стического уравнения суть $\lambda_1^{III} = -a_1$, $\lambda_2^{III} = \frac{a_2c_1-b_{21}a_1}{c_1}$. Аналогично случаю II оба корня действительны, первый всегда отрицателен. Второй — отрицательный, если

 $a_2c_1-b_{21}a_1<0$, в этом случае третье стационарное состояние является устойчивым узлом. Если же $a_2c_1-b_{21}a_1>0$, то второй корень положительный, в стационарной точке III имеем седловую неустойчивость.

 $\overline{x}_1^{IV}\!\!=\!\frac{a_1c_2-a_2b_{12}}{c_1c_2-b_{12}b_{21}}, \overline{x}_2^{IV}\!\!=\!\frac{c_1a_2-a_1b_{21}}{c_1c_2-b_{12}b_{21}}$ матрица коэффициентов ли-

неаризованной системы имеет вид:

$$\begin{pmatrix} \frac{c_1(a_1c_2-b_{12}a_2)}{b_{12}b_{21}-c_1c_2} & \frac{b_{12}(a_1c_2-b_{12}a_2)}{b_{12}b_{21}-c_1c_2} \\ \frac{b_{21}(a_2c_1-a_1b_{21})}{b_{12}b_{21}-c_1c_2} & \frac{c_2(a_2c_1-a_1b_{21})}{b_{12}b_{21}-c_1c_2} \end{pmatrix}.$$

След матрицы линеаризации (сумма коэффициентов a+d линейной системы) есть

$$\frac{c_1(a_1c_2-b_{12}a_2)+c_2(a_2c_1-a_1b_{21})}{b_{12}b_{21}-c_1c_2},$$

определитель матрицы линеаризации Δ (выражение ad-bc в линейных системах):

$$-(c_2a_1-b_{12}a_2)\frac{(a_2c_1-b_{21}a_1)}{b_{12}b_{21}-c_1c_2}.$$

Анализ этих выражений показывает, что в случае положительных координат $\overline{x}_1^{IV} = \frac{a_1c_2 - a_2b_{12}}{c_1c_2 - b_{12}b_{21}}, \overline{x}_2^{IV} = \frac{c_1a_2 - a_1b_{21}}{c_1c_2 - b_{12}b_{21}}$ (именно этот случай соответствует реальной биологиче-

(именно этот случаи соответствует реальной биологической ситуации), рассматриваемое стационарное состояние имеет либо тип седла, либо устойчивого узла.

Примечание. Условия на соотношения значений параметров, определяющие тип стационарных состояний, взаимосвязаны с соотношениями значений параметров, определяющих взаимное расположение главных изоклин.

Итак, в зависимости от значений параметров системы возможны следующие наборы стационарных состояний:

	$\overline{x}_1^I = 0,$	$\overline{x}_1^{II} = 0$,	$\overline{x}_1^{III} = \frac{a_1}{c_1},$	$\overline{x}_1^{IV} = \frac{a_1 c_2 - a_2 b_{12}}{c_1 c_2 - b_{12} b_{21}},$
	$\overline{x}_2^I = 0$	$\overline{x}_2^{II} = \frac{a_2}{c_2}$	$\overline{x}_2^{III} = 0$	$\overline{x}_2^{IV} = \frac{c_1 a_2 - a_1 b_{21}}{c_1 c_2 - b_{12} b_{21}}$
1	Неустой- чивый узел	Седло	Устой- чивый узел	Седло. Лежит за пределами положительной четверти фазовой плоскости
2	Неустой- чивый узел	Устойчивый узел	Седло	Седло. Лежит за пределами положительной четверти фазовой плоскости
3	Неустой- чивый узел	Седло	Седло	Устойчивый узел
4	Неустой- чивый узел	Устойчивый узел	Устой- чивый узел	Седло

Возможна следующая биологическая интерпретация стационарных режимов функционирования системы:

- 1. выживает первый вид;
- 2. выживает второй вид;
- з. устойчивое сосуществование двух видов;
- 4. выживает один из видов в зависимости от начальных условий (триггер, т.е. возможно переключение между двумя устойчивыми состояниями).

Рассмотрим конкретный числовой пример.

ПРИМЕР 8.1.

Пусть
$$a_1 = 3$$
, $b_{12} = 1$, $c_1 = 1$, $a_2 = 5$, $b_{21} = 2$, $c_2 = 1$.

1) Поиск стационарных состояний. Решаем систему алгебраических уравнений:

$$\begin{cases} x_1(3 - x_2 - x_1) = 0, \\ x_2(5 - 2x_1 - x_2) = 0. \end{cases}$$

Получаем координаты четырех стационарных состояний:

- I) $\bar{x}_1^I = 0, \ \bar{x}_2^I = 0;$
- II) $\bar{x}_1^{II} = 0$, $\bar{x}_2^{II} = 5$ это стационарное состояние соответствует вымиранию вида x_1 и достижению видом x_2 стационарной численности 5;
- III) $\overline{x}_1^{III} = 3$, $\overline{x}_2^{III} = 0$ аналогично, это стационарное состояние соответствует вымиранию вида x_2 и достижению видом x_1 стационарной численности 3;
- IV) $\bar{x}_1^{IV} = 2$, $\bar{x}_2^{IV} = 1$.
- 2) Построение главных изоклин. Уравнения изоклин горизонтальных касательных: $x_2 = 0$ и $x_2 = 5 2x_1$. Уравнения изоклин вертикальных касательных: $x_1 = 0$ и $x_2 = 3 x_1$. Каждое из уравнений задает прямую. Попарные пересечения изоклин горизонтальных и вертикальных касательных дают стацио-

нарные состояния (рис. 8.2).

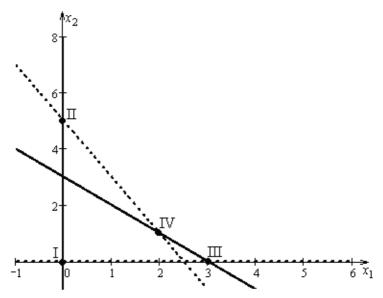


Рис. 8.2. Главные изоклины системы уравнений, описывающих конкуренцию двух видов (пример 8.1). Сплошные линии — изоклины вертикальных касательных, пунктирные — изоклины горизонтальных касательных.

3) Линеаризация системы в окрестности стационарного состояния.

$$\begin{split} & P'_{x_1}(\overline{x}_1, \overline{x}_2) = 3 - \overline{x}_2 - 2\overline{x}_1, \ P'_{x_2}(\overline{x}_1, \overline{x}_2) = -\overline{x}_1, \\ & Q'_{x_1}(\overline{x}_1, \overline{x}_2) = -2\overline{x}_2, \ Q'_{x_2}(\overline{x}_1, \overline{x}_2) = 5 - 2\overline{x}_1 - 2\overline{x}_2. \end{split}$$

В окрестности стационарного состояния $\overline{x}_1^I=0, \quad \overline{x}_2^I=0$ матрица коэффициентов линеаризованной системы имеет вид: $\begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}$. Корни соответствующего характери-

стического уравнения есть $\lambda_{1,2}^I = \begin{bmatrix} 3, \\ 5. \end{bmatrix}$ Корни действительные положительные. Таким образом, получаем, стационарное состояние $\overline{x}_1^I = 0$, $\overline{x}_2^I = 0$ неустойчиво и поведение фазовых траекторий в его окрестности имеет ха-

рактер узла.

В окрестности стационарного состояния $\overline{x_1}^H = 0$, $\overline{x_2}^H = 5$ матрица коэффициентов линеаризованной системы имеет вид: $\begin{pmatrix} -2 & 0 \\ -10 & -5 \end{pmatrix}$. Корни соответствующего характеристиче-

ского уравнения есть $\lambda_{1,2}^{II} = \begin{bmatrix} -2, \\ -5. \end{bmatrix}$ Оба корня действитель-

ны и отрицательны. Второе стационарное состояние является устойчивым узлом.

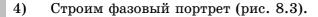
В окрестности стационарного состояния $\overline{x}_1^{III}=3$, $\overline{x}_2^{III}=0$ матрица коэффициентов линеаризованной системы имеет вид: $\begin{pmatrix} -3 & -3 \\ 0 & -1 \end{pmatrix}$. Корни соответствующего характеристиче-

ского уравнения есть $\lambda_{1,2}^{III} = \begin{bmatrix} -3, \\ -1. \end{bmatrix}$ Аналогично случаю II

оба корня действительны и отрицательны. В этом случае третье стационарное состояние является устойчивым узлом.

В окрестности стационарного состояния $\overline{x}_1^{IV}=2$, $\overline{x}_2^{IV}=1$ матрица коэффициентов линеаризованной системы имеет вид: $\begin{pmatrix} -2 & -2 \\ -2 & -1 \end{pmatrix}$. Определитель этой матрицы ad-bc=-2.

В четвертом стационарном состоянии имеем седловую неустойчивость.



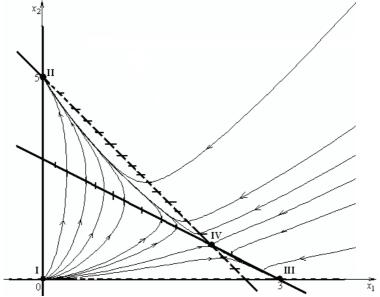


Рис. 8.3. Фазовый портрет системы уравнений, описывающих конкуренцию двух видов (пример 8.1).

Получили триггерный режим: два устойчивых и один неустойчивый узел разделены седлом. В зависимости от начальных условий в системе реализуется одно из двух возможных устойчивых стационарных состояния. Результат можно интерпретировать как выживание одного из двух конкурирующих видов.

ПРИМЕР ЗАДАНИЯ ПО ТЕМЕ «ИССЛЕДОВАНИЕ МОДЕЛИ КОНКУРЕНЦИИ ДВУХ ВИДОВ»

1. Используя численные значения параметров, найдите координаты стационарных состояний, коэффициенты линеаризованной системы в окрестности каждого из стационарных состояний, значения корней характеристических уравнений. Определите тип каждого стационарного состояния, уравнения главных изоклин системы уравнений:

$$\begin{cases} \frac{dx}{dt} = p_1 x - p_2 x y - p_3 x^2, \\ \frac{dy}{dt} = p_4 y - p_5 x y - p_6 y^2. \end{cases}$$

Результат занесите в таблицу.

- 2. Постройте качественный фазовый портрет решения системы.
- 3. В программе TRAX постройте фазовый портрет решения системы. Обратите внимание на выбор масштаба окна фазовой плоскости. Зарисуйте результат.
- 4. В программе TRAX постройте кинетический портрет решения системы для произвольного начального положения изображающей точки. Зарисуйте результат.

Пара-	Координа-	Коэффи-	Уравнени	равнение	
метры	ты стацио-	циенты	изоклины		
	нарных со-	линеари-	верти-	горизон-	
	стояний и	зованной	кальных	тальных	
	тип устой-	системы	касатель- ных	касатель- ных	
	чивости				
$p_1 = 1$	$\overline{x}_1 =$				
$p_2 = 0.5$	$\overline{y}_1 =$				
	$\overline{x}_2 =$				
	$\overline{y}_2 =$				
$p_5 = 0.5$	$\overline{x}_3 =$				
$p_5 = 1$	$\overline{y}_3 =$				
	$\overline{x}_4 =$				
	$\overline{y}_4 =$				
$p_1 = 1$	$\overline{x}_1 =$				
$p_2 = 0.5$	$\overline{y}_1 =$				
$p_3 = 1$	$\overline{x}_2 =$				
$p_4 = 0.5$	$\overline{y}_2 =$				
$p_5 = 1$	$\overline{x}_3 =$				
$p_5 = 1$	$\overline{y}_3 =$				
	$\overline{x}_4 =$				
	$\overline{y}_4 =$				
$p_1 = 1$	$\overline{x}_1 =$				
$p_2 = 0.5$	$\overline{y}_1 =$				
$p_3 = 0.2$	$\overline{x}_2 =$				
$p_4 = 1$	$\overline{y}_2 =$				
$p_5 = 0.3$	$\overline{x}_3 =$				
$p_5 = 0.1$	$\overline{y}_3 =$				
	$\overline{x}_4 =$				
	$\overline{y}_4 =$				

ЗАДАЧИ К СЕМИНАРУ 8

8.1. Модель отбора (выбора одного из равноправных), учитывающая ограниченность в питательных ресурсах и быстрое их поглощение по сравнению с процессами репродукции, в безразмерных величинах имеет вид:

a)
$$\begin{cases} \frac{dx}{dt} = x \cdot \left(\frac{7.5}{x+y} - (1+y)\right), \\ \frac{dy}{dt} = y \cdot \left(\frac{7.5}{x+y} - (1+x)\right). \end{cases}$$
6)
$$\begin{cases} \frac{dx}{dt} = x \cdot \left(\frac{4}{x+y} - (1+y)\right), \\ \frac{dy}{dt} = y \cdot \left(\frac{4}{x+y} - (1+x)\right). \end{cases}$$

Найдите координаты особых точек. Определите тип каждого, из найденных стационарных состояний.

Постройте фазовый портрет системы: а) постройте главные изоклины системы (обязательно укажите уравнения, задающие главные изоклины); б) отметьте стационарные точки на фазовой плоскости; в) постройте несколько фазовых траекторий с различными начальными условиями. Стрелкой укажите направление движения вблизи каждого стационара при $t \to \infty$.

8.2. Взаимоотношения типа хищник-жертва или паразит-хозяин могут быть описаны системой уравнений:

a)
$$\begin{cases} \frac{dx}{dt} = x(6-3y-0.5x), \\ \frac{dy}{dt} = y(5+0.8x-y). \end{cases}$$
 6)
$$\begin{cases} \frac{dx}{dt} = x(4-3y-x), \\ \frac{dy}{dt} = y(3+0.2x-4y). \end{cases}$$

Найдите координаты особых точек. Определите тип каждого, из найденных стационарных состояний. Постройте фазовый портрет системы: а) постройте главные изоклины системы (обязательно укажите уравнения, задающие главные изоклины); б) отметьте стационарные точки на фазовой плоскости; в) постройте несколько фазовых траекторий с различными начальными условиями. Стрелкой укажите направление движения вблизи каждого стационара при $t \to \infty$.